Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa.

نویسندگان

  • A P Voorhees
  • N-J Jan
  • I A Sigal
چکیده

It is widely considered that intraocular pressure (IOP)-induced deformation within the neural tissue pores of the lamina cribrosa (LC) contributes to neurodegeneration and glaucoma. Our goal was to study how the LC microstructure and mechanical properties determine the mechanical insult to the neural tissues within the pores of the LC. Polarized light microscopy was used to measure the collagen density and orientation in histology sections of three sheep optic nerve heads (ONH) at both mesoscale (4.4μm) and microscale (0.73μm) resolutions. Mesoscale fiber-aware FE models were first used to calculate ONH deformations at an IOP of 30mmHg. The results were then used as boundary conditions for microscale models of LC regions. Models predicted large insult to the LC neural tissues, with 95th percentile 1st principal strains ranging from 7 to 12%. Pores near the scleral boundary suffered significantly higher stretch compared to pores in more central regions (10.0±1.4% vs. 7.2±0.4%; p=0.014; mean±SD). Variations in material properties altered the minimum, median, and maximum levels of neural tissue insult but largely did not alter the patterns of pore-to-pore variation, suggesting these patterns are determined by the underlying structure and geometry of the LC beams and pores. To the best of our knowledge, this is the first computational model that reproduces the highly heterogeneous neural tissue strain fields observed experimentally. STATEMENT OF SIGNIFICANCE The loss of visual function associated with glaucoma has been attributed to sustained mechanical insult to the neural tissues of the lamina cribrosa due to elevated intraocular pressure. Our study is the first computational model built from specimen-specific tissue microstructure to consider the mechanics of the neural tissues of the lamina separately from the connective tissue. We found that the deformation of the neural tissue was much larger than that predicted by any recent microstructure-aware models of the lamina. These results are consistent with recent experimental data and the highest deformations were found in the region of the lamina where glaucomatous damage first occurs. This study provides new insight into the complex biomechanical environment within the lamina.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lamina Cribrosa Pore Shape and Size as Predictors of Neural Tissue Mechanical Insult

Purpose The purpose of this study was to determine how the architecture of the lamina cribrosa (LC) microstructure, including the shape and size of the lamina pores, influences the IOP-induced deformation of the neural tissues within the LC pores using computational modeling. Methods We built seven specimen-specific finite element models of LC microstructure with distinct nonlinear anisotropi...

متن کامل

Finite element modeling of optic nerve head biomechanics.

PURPOSE Biomechanical factors have been implicated in the development of glaucomatous optic neuropathy, particularly at the level of the lamina cribrosa. The goal of this study was to characterize the biomechanics of the optic nerve head using computer modeling techniques. METHODS Several models of the optic nerve head tissues (pre- and postlaminar neural tissue, lamina cribrosa, central reti...

متن کامل

Scleral anisotropy and its effects on the mechanical response of the optic nerve head.

This paper presents a computational modeling study of the effects of the collagen fiber structure on the mechanical response of the sclera and the adjacent optic nerve head (ONH). A specimen-specific inverse finite element method was developed to determine the material properties of two human sclera subjected to full-field inflation experiments. A distributed fiber model was applied to describe...

متن کامل

Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of a Duplex Stainless Steel

Duplex stainless steels (DSSS) have a microstructure composed of ferrite and austenite phases that gives them a very good combination of mechanical and corrosion properties. These steels are desirable for many applications in the chemical and petrochemical industries. In the present study, a type of stainless steel was cast, solution annealed at 1200°C for 60 min and then quenched in water. Ini...

متن کامل

Intraocular Pressure Effects on Collagen Crimp in the Peripapillary Sclera

INTRODUCTION Glaucoma is the second leading cause of irreversible blindness worldwide with neural damage starting within the lamina cribrosa of the optic nerve head (ONH). It is known that elevated intra-ocular pressure (IOP) is the main risk factor for glaucoma, and many studies have shown that this is because glaucoma is related to a biomechanical imbalance in the eye [1]. Studies have also s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biomaterialia

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2017